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ВВЕДЕНИЕ

Общая теория относительности Эйнштейна позволила понять
природу гравитации и рассматривать Вселенную на совершенно другом
уровне, благодаря чему были построены многие теории современной
физики. Однако, несмотря на экспериментальные подтверждения теории
Эйнштейна, всё ещё остаётся ряд вопросов, на которые данная теория
не может дать ответ, что, в свою очередь, наводит на мысли о
модификации ОТО. В сингулярностях законы ОТО, как и любые
другие законы физики, нарушены; в результате чего возникла идея,
что, возможно, изучение квантовых гравитационных эффектов позволит
посмотреть на сингулярность под другим углом и разрешить проблему.
Но, несмотря на огромные усилия, приложенные к созданию квантовой
теории гравитации, сделать этого по-прежнему не удалось. В итоге
сложилась проблема, как создать теорию, которая объединяет в себе
хорошо известное и проверенное решение ОТО в инфракрасном пределе,
то есть в масштабах солнечной системы и космологии, и решение
для ультрафиолетового предела. Эта проблема порождает нынешний
интерес к моделям гравитации с нарушенной Лоренц-инвариантностью,
несмотря на её фундаментальность. Во-первых, подобные модели дают
шанс на поиск альтернатив общей теории относительности (ОТО),
которые изменяют законы гравитации. Этот поиск, в свою очередь,
вызван попытками найти решения ряда проблем, таких как проблема
темной материи и темной энергии. Во-вторых, такие теории могут
являться своеобразными лабораториями для проверки принципа Лоренц-
инвариантности, что позволит глубже изучить его природу. Третьим
источником данного интереса является цель построить разумную и
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естественную основу для проверки гравитационных наблюдений, когда
многочисленные альтернативные теории уже были исключены либо
сильно ограничены. Одной из таких теорий квантовой гравитации, к
которой так же относятся выше перечисленные мотивационные моменты,
является модель гравитации Эйнштейна-эфира [1], где нарушение Лоренц-
инвариатности реализовано единичным временным векторным полем,
называемым эфиром. Также есть и другие модели, нарушающие данный
принцип, например, массивная гравитация [2]. В этой дипломной работе
мы рассмотрим теорию квантовой гравитации [3], предложенную Петром
Хоравой.
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СЛОЖНОСТИ ПОСТРОЕНИЯ ТЕОРИИ
КВАНТОВОЙ ГРАВИТАЦИИ

Одна из проблем построения квантовой теории гравитации
заключается в том, что общая теория относительности не является
перенормируемой (пертурбативно). Это спровоцировано тем, что
четырехмерная гравитационная константа связи GN имеет отрицательную
размерность массы:

1

m2
(в естественной системе единиц, где скорость света

и постоянная Планка равны единице: c = 1, ~ = 1), в то время как для
пертурбативной перенормируемости необходимо, чтобы константа связи
GN имела размерность больше или равную нулю. То есть разложение
в ряд данной физической величины F по гравитационной константе связи
имеет следующий вид

F =
∞∑
n=0

an(GNE
2)n (1)

Где E является энергией задействованной системы, поэтому (GNE
2)

является безразмерной величиной. И можно заметить, что в случае, когда
E2 > G−1N , такой ряд будет расходиться. Что в свою очередь означает,
что если и можно построить некоторую эффективную теорию гравитации
с GN , имеющую отрицательную размерность, которая будет являться
перенормируемой при помощи методов квантовой теории поля, то такая
построенная теория будет разрушаться при таких энергиях, что и делает
общую теорию относительности не перенормируемой. [4] Одной из идей
для разрешения проблемы перенормируемости ОТО является добавление
к действию Эйнштейна-Гильберта слагаемых, квадратичных по кривизне,
например,
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S =
1

16πGN

∫
d4x
√
−g(R +RµνR

µν) (2)

Такие поправки к действию включают производные высокого
порядка, а это, в свою очередь, может привести к таким проблемам
как духи. После добавление слагаемого RµνR

µν не только появляется
дополнительное взаимодействие, но также изменяет свой вид и
гравитационный пропагатор [3]

k =
√
ω2 − k2

1

k2
+

1

k2
GNk

4 1

k2
+

1

k2
GNk

4 1

k2
GNk

4 1

k2
+ ... =

1

k2 −GNk4
(3)

Таким образом пропагатор при высоких энергиях (в ультрафиолете)

ведет себя как
1

k4
, что позволяет избравиться от проблемы расходимости,

упомянутой выше. Однако подобное решение, в свою очередь, порождает
новую патологию, которая мешает такой модфицированной теории стать
разрешением проблемы квантовой гравитации, потому что в таком случае
теория становится не унитарной, так как имеется два полюса

1

k2 −GNk4
=

1

k2
− 1

k2 − 1/GN
(4)

Первый полюс относится к описанию кандидата на роль безмассового
гравитона, второй же добавляет проблему, так как теперь в теории
появляются духи, в нашем случае это и означает, что теория становится
не унитарной (второй полюс описывает массивный гравитон, но с
неправильным знаком перед ним, это означает, что гравитон на самом деле
является духом (отрицательная энергия), соответственно существование
такого духа и делает теорию не унитарной). Само же появление духов
спровоцировано тем, что такая модфицированная теория будет иметь
слагаемые, которые имеют производные по времени выше второго порядка.
Например, в случае включения квадратичных слагаемых по кривизне,
в уравнениях поля будут содержаться слагаемые, имеющиие четвертый
порядок производной по времени. Вообще говоря, существует
теорема Михаила Васильевича Остроградского, которая утверждает, что

4



система не является (кинематически) устойчивой, если она описывается
невырожденным лагранжианом с более высокой производной по времени.
В качестве примера, рассмотрим систему, лагранжиан которой содержит
вторые производные по времени, то есть:

L = L(x,
.
x,

..
x),

.
x =

dx(t)

dt
(5)

Тогда уравнение, получаемое из данного лагранжиана, выглядит
следующим образом:

∂L

∂x
− d

dt

∂L

∂
.
x

+
d2

dt2
∂L

∂
..
x

= 0 (6)

В этом случае невырожденность лагранжиана означает условие

∂2L(x,
.
x,

..
x)

∂
..
x
2 6= 0 (7)

Такое условие даёт возможность перевести уравнение (6) в другой вид:

d4x(t)

dt4
= F (x,

.
x,

..
x,

...
x, t) (8)

Тогда у нас получается дифференциальное уравнение четвёртого порядка,
соответственно для не тривиального и однозначного решения требуется
иметь четыре начальных условия, это, в свою очередь, означает, что
должны быть четыре канонические координаты, которые можно выбрать
так:

X1 ≡ x, P1 ≡
∂L

∂
.
x
− d

dt

∂L

∂
..
x

X2 ≡
.
x, P2 ≡

∂L

∂
..
x

(9)

В силу того условия, что данный лагранжиан невырожденный
(7), можно утверждать о сущестовании обратного решения уравнений в
формуле (9)

..
x = A(X1, X2, P2)

И таким образом
∂L

∂
..
x
|x=X1,

.
x=X2,

..
x=A = P2 (10)
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Тогда можно получить соответсвующий гамильтониан такой системы:

H =
2∑
i=1

Pi
dix

dti
− L = P1X2 + P2A− L (11)

Можно заметить, что такой гамильтониан является линейным
относительно имупльса P1, следовательно это означает, что нет никаких
барьеров, которые препятствовали бы распаду данной системы, из чего
можно утверждать, что подобная система является нестабильной.

Пример был приведен для лагранжиана, имеющего слагаемые
вида ..

x, однако данную теорему Остроградского можно легко обобщить
аналогичными рассуждениями на случай, если будут присутствовать
слагаемые с большим порядком производной по времени.

Становится ясно, что в силу приведенной выше теоремы,
любая модель альтернативной гравитации, будет являться нестабильной,
если её в лагранжиане будут содержаться слагаемые с большим
порядком производной по времени. Поэтому были попытки расширения
теорий с целью избежать последствий, которые гарантирует теорема
Остроградского [5, 6].

Другой идеей для избежания нестабильности системы является
создание такой теории, в которой будут содержаться производные
высших порядков, но только пространственные, при этом оставляя
временные производные того порядка, который удовлетворяет теореме
Остроградского, чтобы система не была гарантированно неустойчивой. Что
и было проделано Петром Хоравой [3]
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ТЕОРИЯ ГРАВИТАЦИИ ХОРАВЫ-ЛИФШИЦА

Способ, который лег в основу теории гравитации Хоравы-
Лифшица, для обхода торемы Остроградского, заключается в том,
чтобы нарушить Лоренц-инвариатность в ультрфиолетовом пределе и
включить в лагранжиан только производные высокого порядка только
по пространственной части, сохраняя при этом производные по времени
не выше второго порядка. Однако стоит отметить, что подобный подход
к построению теории нужно делать достаточно осторожно, так как
предположение о нарушении такого заветного принципа, как Лоренц-
инвариатность, даже на определенных энергетических масштабах, вообще
говоря, никак не наблюдалось, а все остальные эксперименты и наблюдения
до сих пор согласуются с ним, поэтому на данный момент нет никаких
доказательств того, что Лоренц-инвариантность может быть нарушена
хоть где-нибудь. [7]

Однако, согласно нашему нынешнему пониманию, пространство
и время квантованы глубоко на Планковском уровне энергий, а
непрерывные физические величины появляются позже, как классический
предел. Так как Лоренц-инвариантность является непрерывной
симметрией, то возникает идея, что она может не существовать
на квантовом уровне, а появляться позже на низких энергиях (в
инфракрасном масштабе). Такой подход даёт возможность обойти теорему
Остроградского, а также иметь слагаемые, упомянутые выше.

Метод, которым Хорава нарушает Лоренц-инвариантность,
является анизотропное масштабирование пространства и времени.

t→ b−zt, xi → b−1xi, (i = 1, 2, ..., d). (12)
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Где b — произвольная константа, а z — некоторый показатель. При этом
стоит отметить, что, вообще говоря, есть условие z ≥ d, необходимое
для того, чтобы теория, построенная на таких соображениях, была
перенормируема (где d — размерность пространства), и z, вообще
говоря, может быть и не равна размерности пространства, однако анализ
перенормируемости теории показывает, что выбор z = d способствует
наиболее благоприятному поведению, то есть:

t→ b−dt, xi → b−1xi, (i = 1, 2, ..., d) (13)

После такого перемасштабирования пространство и время имееют
соотвественные (конформные) размерности:

[t] = −d; [xi] = −1 (14)

В связи с нарушением Лоренц-инвариантности группа
диффеоморфизов редуцируется, тогда соответсвующие преобразования
для времени и пространства будут записаны в следующем виде:

t→ ξ0(t), xi → ξi(t,
→
x) (15)

Таким образом видно, что пространтсвенный диффеоморфизм
всё ещё сохраняется. Это группа диффеоморфизмов, сохраняющих
структуру расслоения (фактически теория строится в виде расслоения
пространства-времени на пространственно подобные гиперповерхности с
времениподобным слоем).

Подобная постановка вопроса, что нам необходимо выбрать
конкретный временной слой, который описывается пространственной
гиперповерхностью и зависит от параметра t (времени), делает
естественным для данной теории применение разложения Арновитта-
Дезера-Мизнера (АДМ) для метрики, которое используется для
построения Гамильтоновой формулировки общей теории относительности.

gµν =

(
−N 2 +NiN

i Ni

Nj γij

)
(16)
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То есть теперь наша метрика зависит от переменных (N,N i, γij), где
N,N i, γij являются функцией хода, вектором сдвига и пространственной
частью метрики gµν соответственно.

При перемасштабировании, опредленном в (13), данные переменные
будут также иметь свои изменения, которые записываются в виде:

N → N, N i → b2N i, γij → γij (17)

И соответственно их размерности:

N = 0, [N i] = 2, [γij] = 0 (18)

Относительно малых калибровочных преобразований
ξ = (ξ0(t), ξi(t, xk)) нововведенные поля с учетом оставшегося
диффеоморфизма будут иметь следующий закон преобразования:

δN = ξk∇kN +
.

Nξ0 +N
.

ξ0

δNi = Nk∇iξ
k + ξk∇kNi + gik

.

ξk +
.

Niξ0 +Ni

.

ξ0

δγij = ∇iξj +∇jξi + ξ0. (19)

где Ni ≡ γijN
i (поднятие и опускание индексов после применения АДМ

разложения осуществляется за счёт γij)
Известно, что такое расщепление пространства-времени

приводит к расщеплению кривизны Римана на внешнюю кривизну
пространственной гиперповерхности, которая описывает вложение такой
гиперповерхности во всеобъемлющее пространство, и пространственный
тензор Римана, который уже описывает внутреннюю кривизну выбранного
пространственного слоя при t = const. [8]. Внешняя и внутренняя кривизна
записываются следующим образом:

Kij =
1

2N
(− .
γij +∇iNj +∇jNi)

R
(d)
ij = R

(d)
ij (γij) (20)

∇i — ковариантная производная, относящаяся только к

9



пространственной части метрики γij, а
.
γij =

∂γij
∂t

. С условием изменения
масштаба (12) внешняя и внутренняя кривизны, ковариантная производная
так же, как и нововведенные поля из АДМ разложения, будут иметь
соответствующие размерности.

[Rij] = 2, [Kij] = 3, [∇i] = 1 (21)

Теперь, так как производные по времени содержатся только во
внешней кривизне, то кинетическая часть лагранжиана будет записана в
виде:

LK =
1

κ2
(KijK

ij − λK2) (22)

где κ2 — гравитационная константа связи, с размерностью

[κ2] = [t].[xi]3 + [K]2 = −z − 3 + 2z = z − 3 (23)

Как видно, при z = 3 константа становится безразмерной, поэтому в этом
случае, теория становится перенормируемой в пертурбативном смысле.
Также стоит отметить, что другая константа связи λ в данном случае
отлична от единицы, в то время как в общей теории относительности λ = 1

Если с кинетической частью лагранжиана особых проблем не
появляется, то с потенциальной частью уже возникают весомые трудности,
которые действительно сильно осложняют изучение теории Хоравы.
Общий потенциал будет являться линейной комбинацией всех возможных
величин, которые будут удовлетворять теории, из-за чего в лагранжиан
будет добавлено порядка сотни слагаемых [13]. В качестве борьбы с
таким огромным выражением, предлагались различные ограничения на
теорию, которые позволяли переписать потенциал в более компактном
виде, например: проективность, условие детального баланса.
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ПРОЕКТИВНАЯ ВЕРСИЯ ГРАВИТАЦИИ
ХОРАВЫ-ЛИФШИЦА

Как уже было сказано выше, АДМ разложение даёт переписать
метрику в виде:

ds2 = −N 2dt2 + γij(dx
i +N idt)(dxj +N jdt) (24)

Вообще говоря, есть стремление построить теорию, которая будет
инвариантна относительно группы диффеоморфизмов (FDiff), которые
сохраняют заданную структуру слоения. Такие диффеоморфизмы состоят
из зависящих от времени преобразований и пространственных координат, а
также независимых от пространственной части репараметризаций времени
(такие преобразования были записаны ранее в (15)). Причём ξ0(t) должна
быть монотонной функцией времени. Тогда действие теории строится из
операторов, которые преобразуются как скаляры при FDiff и имеют
размерность до 2d, где d — размерность пространства [11].

S =
1

2χ2

∫
dtddx

√
γN(KijK

ij − λK2 − V ) (25)

Где K = γijKij, а потенциальный член V состоит из всех допустимых
комбинаций инвариантов размерности масштабирования до 2d, которые
состоят из γij, N , а также их производных по отношению к ∇i.

Соответственно существует две версии гравитации Хоравы-
Лифшица − проективная и непроективная. В непроективной версии
функция хода N является функцией одновременно и пространственной
части и временной.

N = N(t, xk) (26)
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В проективной же версии функция хода зависит только
от времени — N = N(t). В таком случае для удобства её можно
положить равной единице N(t) = 1, что позволяет сделать
временная репараметризация, при этом оставляя зависящие от
времени пространственные диффеоморфизмы в качестве оставшихся
калибровочных преобразований. (Такой выбор N(t) фиксирует
параметризацию времени).

Таким образом, используя тождества Бьянки и интегрирование
по частям, можно найти наиболее общий потенциал в случае, когда d = 3

[9]
V d=3 = 2Λ− ηR + µ1R

2 + µ2RijR
ij + ν1R

3 + ν2RRijR
ij

+ ν3R
i
jR

j
kR

k
i + ν4∇iR∇iR + ν5∇iRjk∇iRjk (27)

Здесь R и Rij пространственные скаляры и тензоры Риччи соответственно.
В итоге данная теория в случае d = 3 имеет 11 констант связи.

Известно, что во всех измерениях больше 2+1 гравитон ведёт
себя как тахион в ИК пределе, а следовательно, плоское пространство
не является стабильным вакуумом в теории; но эту проблему можно
разрешить, накладывая условие непроективности N = N(t, xk) [10]. Тем
не менее, это не избавляет от интереса к проективной версии, так как уже
доказано, что в 2+1 проективная (вообще говоря, непроективная тоже)
теория полностью перенормируема [11].

Также известно, что в плоском двумерном пространстве нет
статических решений типа чёрных дыр, однако совершенно иная картина
наблюдается в случае гравитации Хоравы-Лифшица. Сибиряковым и
Барвинским [11] при анализе возмущений было показано, что помимо
обычных тензорных мод, которые присутствуют и в общей теории
относительности, в теории Хоравы так же есть и скалярные моды,
которые являются дополнительной степенью свободы, что, в свою очередь,
делает возможным существование чёрных дыр и в 2+1 пространстве.
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Например, для проективной версии в 3+1 получается следующая
картина. Рассмотрим пертурбации

γij = δij + hij (28)

После чего нужно разложить возмущения на скалярные, векторные и
поперечно-бесследовые тензорные части.

Ni = ∂iB + ui,

hij = (δij −
∂i∂j
∆

)ψ +
∂i∂j
∆

E + ∂ivj + ∂jvi + ζij.

с условием того, что

∂iui = ∂ivi = ∂iζij = ζii = 0. (29)

Квадратичная часть действия для возмущений:

Sd=3
2 =

1

2χ2

∫
dtd3x

 .

ζ2ij
4

+
η

4
ζij∆ζij −

µ2
4
ζij∆

2ζij

+
ν5
4
ζij∆

3ζij −
1

2
(
.
vi − ui)∆(

.
vi − ui)

+

.

ψ
2

2
+

1

4
(
.

E − 2∆B)2 − λ

4
(2

.

ψ +
.

E − 2∆B)2

−η
2
ψ∆ψ −

(
4µ1 +

3µ2
2

)
ψ∆2ψ +

(
4ν4 +

3ν5
2

)
ψ∆3ψ

]
(30)
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НЕПРОЕКТИВНАЯ ВЕРСИЯ И ХРОНОННОЕ
ПОЛЕ

Дополнительная степень свободы, упомянутая выше, позволяет
явным образом ввести новое поле ϕ, которое и будет описывать эту
степень свободы. При описании хрононного поля мы сосредоточимся на
непроективной версии гравитации Хоравы, так как в проективной версии
возникает проблема, связанная с горизонтом Киллинга и универсальным
горизонтом (в силу условия проективности, когда мы также выбираем N =

1, из определения универсального горизонта, а соответсвенно из условия
ортогональности вектора Киллинга и единичного вектора, который задаёт
направление течения хрононного поля, выходит, что N должна быть
равна нулю — противоречие), который появляется благодаря введению
вещественного скалярного поля ϕ. В дальнейшем это будет описано. В этом
случае хронометрическая модель будет обладать симметрией относительно
преобразований вида:

ϕ→ f(ϕ) (31)

Где f — произвольная монотонная функция. Тогда для построения
действия в терминах хрононного поля введем вектор uµ, который является
единичным вектором, ортогональным к пространственно подобным
гиперповерхностям, появившиеся в результате расслоения пространства-
времени путем введения АДМ параметризации.

uµ ≡
∂µϕ√

gµν∂µϕ∂νϕ
(32)

Таким образом получается, что гравитация уже описывается не
привычным временем и пространством, как в ОТО, а метрикой gµν и
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хрононным полем uµ. Причём «истинным» временем является само поле
ϕ. Также для записи данной теории в ковариантном виде введем проектор
на гиперповерхности из расслоения:

pµν = gµν + uµuν (33)

Тогда в ИК пределе действие теории Хоравы, в терминах хрононного
поля и в ковариантой форме будет иметь следующий вид [10]:

S = −M
2

2

∫
d4x
√
−g
[
R + α(uµ∇µuν)

2 + β∇µu
ν∇νu

µ + λ(∇µu
µ)2
]

(34)

Где R — скаляр Риччи пространства-времени, M — массовый
параметр, относящийся к планковской массе, а α, β, λ — безразмерные
константы и

α, β, λ� 1.

Действие (34) является наиболее общим выражением, будучи
инвариантным относительно преобразований ϕ → f(ϕ) и содержащим
только вторые производные uµ.
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ЧЁРНЫЕ ДЫРЫ В НЕПРОЕКТИВНОЙ ВЕРСИИ
В ИК МАСШТАБЕ ЭНЕРГИЙ

В гравитации Хоравы-Лифшица, как упомяналось выше, могут
существовать чёрные дыры даже в 2+1 пространстве-времени, а в
непроективном случае ещё и появляется хрононное поле, которое несколько
изменяет привычное понятие чёрной дыры. Однако в отличие от общей
теории относительности, где не нарушена Лоренц-инвариантность и
скорости частиц строго ограничены, в теории Хоравы частицы, вообще
говоря, не имеют ограничения на скорость, что заставляет задуматься
о возможности существования истинных чёрных дыр в такой теории.
В непроективном случае проблема решается благодаря универсальному
горизонту, который появляется, как результат существования хрононного
поля. Несмотря на бесконечно большие моды, которыми могут обладать
частицы (соответственно бесконечную скорость), покинуть пределы
универсального горизонта всё равно нельзя. Более прозаичней обстоит
ситуация в проективной версии, где универсального горизонта нет. Поэтому
чернодырные решения в проективном случае не являются "абсолютными" ,
так как будут существовать частицы, способные выбраться из-под
привычного горизонта событий (об этом ниже). Сам же интерес к чёрным
дырам в теории Хоравы обоснован проблемами сингулярности и энтропии,
которые имеет общая теория относительности. Например, те же остатки от
чёрных дыр.

Используя действие (34), можно рассмотреть теорию в 3+1
в ИК пределе (в этом действии откинуты слагаемые, отвечающие за
ультрафиолетовую область).
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ЧЁРНЫЕ ДЫРЫ В УФ ТЕОРИИ ГРАВИТАЦИИ
ХОРАВЫ

Из приведенных выше соображений следует, что в теории
Хоравы полевые моды могут обладать бесконечно большими скоростями,
как следствие нарушения Лоренц-инвариантности. То есть, на первый
взгляд, чёрных дыр в данной теории гравитации существовать не может,
так как были бы частицы, имевшие неограниченные скорости, и в
следствии чего вылетали бы из-под горизонта чёрной дыры. Однако,
в данной теории можно выделить объекты, аналогичные по своей
сути чёрным дырам в ОТО, которые действительно будут являться
чёрными дырами, но с некоторым доопределением, возникающим из-за
мгновенных мод. Универсальный горизонт, который был упомянут выше,
в теории Хоравы имеет роль причинного горизонта и получается как
решение уравнений для uµ, так как хрононное поле задаёт истинное
время. Соответственно абсолютно все моды, неважно насколько они
велики, могут распространяться лишь в направлении хода истинного
времени. Таким образом, универсальный горизонт определяет причинную
структуру пространства-времени в гравитации Хоравы. И соответственно
никакие моды не могут покинуть область, ограниченную универсальным
горизонтом. Однако универсальный горизонт существует лишь в
непроективной версии гравитации Хоравы. В проективном случае можно
заметить, что существование такого горизонта невозможно.

В силу того, что нас интересуют статические решения для
проективной версии, то метрика не содержит функций, зависящих
от времени, в следствии чего мы имеем времениподобный вектор
Киллинга ∂/∂t. Тогда горизонт Киллинга можно установить условием,
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что времениподобный вектор Киллинга должен иметь нулевую норму
на данном горизонте. Расположение универсального горизонта можно
определить тем, что единичный вектор uµ, ортогональный слою,

uµ = −Nδtµ (35)

должен стать ортогональным вектору киллинга t

u
∂

∂t
= −N = 0 (36)

Но условие проективной теории N(t) = 1 делает невозможным
получение решений, представляющих универсальный горизонт в
проективной гравитации Хоравы. А значит, в проективной версии можно
зондировать внутреннюю часть чёрной дыры при помощи конечных мод.
Рассмотрим статическое аксиально-симметрическое решение для чёрных
дыр в 2+1 из работы [12]. Полное действие (с требованием отсутствия
духов в решениях в случае проективной версии), потенциал, внешняя
кривизна соответсвенно будут выглядеть следующим образом:

S =
1

κ

∫
dtd2x

√
γN(KijK

ij − λK2 − V ),

V = 2Λ + µR2,

Kij =
1

2N
(∂tγij −∇iNj −∇jNi) (37)

Где коэффициент κ = 16πG, λ безразмерная константа связи. А константа
µ отвечает за члены, имеющие значение в УФ пределе решений (для
решения в ИК пределе можно откинуть часть, вносимую ими в уравнения
на поля). Тогда полное действие для данной теории будет записано в виде:

S =
1

κ

∫
dtd2x

√
γN(KijK

ij − λK2 − 2Λ− µR2) (38)

Решение будет изучаться в проективной версии Хоравы, поэтому в
дальнейшем N(t) = 1, если не оговорено иное. Варьируя по функциям
сдвига Ni и метрике γij, получаем систему уравнений
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Ψi ≡ ∇jKij − λ∇iK = 0 (39)

Ωij ≡ −Dt(K
ij − λγijK)− (1− 2λ)KKij − 2K ikKj

k

+
1

2
KklKklγ

ij +
λ

2
K2γij +

µ

2
R2γij + 2µ∆Rγij

− 2µ∇i∇jR− Λγij = 0 (40)

Где Dt — ковариантная производная, определенная как

Dt = ∂t − L→
N

(41)

где L→
N

— производная Ли. То есть, ковариантная производная
Dt будет действовать по следующему закону (тензор A является
некоторым тензором, на примере которого показано действие ковариантной
производной):

DtA
ij = ∂tA

ij −Nk∇kA
ij + Aik∇kN

j + Ajk∇kN
i (42)

Также локальная инвариантность при пространственно-временных
диффеоморфизмах накладывает тождества Бьянки:

∇jΩ
ji + γijDtΨj +KΨi = 0 (43)

Далее используется анзац для метрики, записанный в виде АДМ
разложения

ds2 = (−1 +NiN
i)dt2 + 2Nidx

idt+ γijdxidxj (44)

Так как решение стационарное и аксиально-симметричное, то для функций
сдвига будут накладываться следующие условия, которые в свою очередь
уменьшат количество уравнений в системе:

∂tN
i = ∂tγij = 0, N θ = 0 (45)

Так как любая двумерная метрика конформно плоская, то γij может
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зависеть только от одной функции G(r), а следовательно только от одной
координаты r. Соответственно анзац для двумерной пространственной
метрики имеет вид:

ds22 = dr2 + r2G(r)2dθ2 (46)

И определив N r = F (r), получим анзац для полной метрики:

ds2 = (−1 + F (r))2dt2 + 2F (r)dtdr + dr2 + r2G(r)2dθ2. (47)

После подстановки анзаца в уравнения, полученные выше путем
вариации, получаем уравнения на функции F (r) и G(r). В ИК пределе
для функций, относительно которых построены данные уравнения, можно
аналитически найти асимптотики.

Затем численно находятся два решения для случая, когда
константа связи µ включена (то есть в УФ пределе). Первое решение будет
искаться в случае, когда происходит интегрирование уравнений, начиная
с бесконечности и заканчивая в нуле, соответственно и граничные условия
(асимптотики) будут накладываться из соображений о том, какое должно
получаться решение на бесконечности (оно должно быть схожим с ИК
случаем, но без участия Λ, так как в случае поиска решений в УФ пределе
Λ приравнивается к 0, а µ наоборот становится ненулевой).
Также позволительно ввести новую переменную Γ, в силу имеющейся
симметрии в уравнениях на функции полей.

Γ(r) =
1

r
+
G

′(r)

G(r)
,

что позволит упростить уравнения. Соответственно, первое решение при
больших r имеет следующие асимптотики:

F (r) = F∞r
−σ, Γ(r) =

1 + 2σ

r
. (48)

А сам анзац для поиска первого численного решения выглядит в виде ряда

F (r) = F∞r
−σ

[
1 +

∑
n,m

f(n,m)

rn+mσ

]
(49)
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Γ(r) =
1 + 2σ

r

[
1 +

∑
n,m

g(n,m)

rn+mσ

]
(50)

Условия для второго решения подразумевают, что функции F (r) и
G(r) должны быть аналитичны около r = 0. Также требование отсутствия
дефицита угла при r = 0 накладывает условиеG(0) = 1, что можно сделать
без ограничения общности в силу симметрии уравнений, которое гласит,
что если пара решений (F,G) является решением уравнений (которые
приведены в работе [12]), то пара (F, kG) также является решением этих
уравнений. Где k — произвольный коэффициент растяжения. Анзац для
второго решения выглядит как:

F (r) =
∞∑
n=0

F2n+1r
2n+1 (51)

Γ(r) =
1

r
+
∞∑
n=0

Γ2n+1r
2n+1 (52)

Эти два решения должны совпадать и быть регулярными на
некотором радиусе, для определенности положим rm = 1 для
возможности их склеить. Тогда возникают следующие граничные условия,
накладываемые на уравнения

∆F |rm = ∆F
′|rm = ∆Γ|rm = ∆Γ

′|rm = 0

Где под ∆ подразумевается

∆X|rm ≡ Xout(rm)−Xin(rm) (53)

В итоге мы получаем 4 уравнения для 4 констант интегрирования,
пары которых относятся к первому и второму решению соответственно:

F∞, f(1,0) F1,Γ1 (54)

Однако в силу симметрии уравнений, относительно
перемасштабирования координат, позволительно избавиться в этих
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уравнениях от одной из 4 интегральных констант, и положить её равной
1. Для определенности положим F1 = 1.

Это приводит к тому, что система становится переопределена (4
уравнения и 3 неизвестных). Также исследование данных уравнений
показывает, что неверным является предположение о том, что при
решении 3 из 4 уравнений последнее будет выполнено автоматически.
Это наводит на мысль, что следует доработать решение. Но, в работе
[12] аналитически показано, что введение дополнительных слагаемых по
кривизне в проективной версии гравитации Хоравы-Лифшица не избавляет
от сингулярностей, которые присутствуют в решениях уравнений,
получаемые из действия (38) так или иначе. Поэтому, возможно, стоит
попробовать изучить подобную идею о разрешении сингулярностей в
непроективном случае.
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ЗАКЛЮЧЕНИЕ

В работе были изучены основы теории гравитации Хоравы-Лифшица,
которая, как доказано в некоторых случаях, полностью перенормируема
[11], что определяет отдельный интерес к этой модели. Изучение такой
теории даёт надежду на решение проблем, связанных с энтропией,
сингулярностью и остатками от чёрных дыр, которые, по предположению,
остаются после испарния чёрных дыр. Сами же чёрные дыры в гравитации
Хоравы-Лифшица обладают универсальным горизонтом, который не
свойственен чёрным дырам из ОТО. Благодаря такому горизонту и
существуют чёрные дыры в данной теории, в силу того, что из-
за нарушенной Лоренц-инвариатности частицы могут иметь бесконечно
большие скорости. В ходе работы были изучены чернодырные решения для
ИК области в 3+1 для непроективной версии и решения для УФ области в
2+1 проективной версии.

Благодаря тому, что есть надежда описать гравитацией Хоравы-
Лифшица природу внутри чёрных дыр, то имеется надежда обнаружить
в такой теории квантовые эффекты связанные с чёрными дырами. В УФ
области в 2+1 (где доказана перенормируемость) в проективном случае
Хорава-Лифшица не избавляет от сингулярностей, как полагалось [12].
Однако остаётся надежда, что будет иной исход в непроективном случае,
поэтому далее планируется изучение такого варианта теории, однако,
в таком случае действие будет иметь более сложный вид, нежели в
проективной версии, что дополнительно осложняет задачу.
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